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Linear algebra is one of the truly foundational ideas of mathematics, with roots in both 
basic arithmetic and in Euclidean geometry. The rational numbers are after all a vector 
space over themselves. And the idea of adding vectors as geometric items goes back to 
Euclid’s construction of a line segment emanating from a given point parallel to and with 
the same length as a given line segment (Euclid. Elements, Proposition 31, Book I, for 
the parallelism, the length then being obtained by an obvious laying off of the given 
length).  But  linear algebra as a formal subject unto itself is a creation of relatively 
modern times, arguably beginning with the presentation in 1693 by Cramer of what is 
today known as Cramer’s rule, following the consideration of determinants by Leibnitz. 
Gaussian elimination was developed by Gauss in the early 19th Century, oddly enough 
primarily for least squares solution of problems in very applied mathematics, it seems. 
Linear algebra developed explosively in the mid 19th century in the hands of Cayley, 
Hamilton, and Sylvester, and others; and by the end of the 19th century it had become an 
enormous subject. The modern formal concept of a vector space , as opposed to many 
and various concrete examples, seems to have been introduced by Peano in 1888,and this 
opened up the possibility of considering linear transformations on vector spaces of 
infinite dimension: functional analysis was knocking at the door and was soon strongly 
developed  by Hilbert, Banach , and a host of  others. In the 20th century the concepts of 
linear algebra proliferated almost without limit, leading to subjects as various as 
functional analysis in its present magnificence as well as Lie group theory and 
representation theory. The growth of the subject in its extended sense continues today 
without slackening its pace, and for that matter, so does the growth of the subject in its 
rather more narrow sense. Matrix theory in various forms remains an active research area 
for example. 
 
No course and certainly not one as brief of this one could begin to discuss even a 
substantial fraction of the topics that have grown out of linear algebra in the strict sense 
and that might be considered to be part of linear algebra in the extended sense. (The 
“Handbook of   Banach Spaces “, a survey of the subject, involves two volumes of nearly 
1000 pages each!). The intention of this course is only to present those topics that are 
fundamental for all of the vast array of topics that are part of linear algebra in the broad 
sense.  
 
Even in this restricted context, there is much to be discussed. And as it happens, there are 
really two quite distinct ways to discuss the topics. The two ways are associated , roughly 
speaking, to choosing a basis or not. In the former view, a linear transformation is 
considered essentially to be a  matrix, or more precisely a set of matrices which are 
related to each other by change of basis for domain and range. In the latter, the linear 
transformation as an abstraction, as a function from one vector space to another which is 
linear, is taken as primary. Its matrix representations arise incidentally.  
 
In a sense, these two views are equivalent. But the emphasis is different. The matrix idea 
is really useful primarily when restricted to finite dimensions, but in that situation if leads 



to many profound results, especially to the “canonical forms” of one sort and another, 
results which are less natural in formulation in terms of abstract linear transformations.   
 
The linear transformation idea, on the other hand, is really indispensable in infinite 
dimensions. Every vector space has a basis (at least in set theory which include the 
Axiom of Choice), but most naturally arising infinite dimensional vector spaces do not 
have naturally arising bases. For example, the space of continuous real valued functions 
on the closed interval [0,1] could hardly be more natural from the viewpoint of modern 
analysis , but no explicit basis of any sort is known, or even constructible in any 
reasonable sense.(For one thing, this vector space has uncountable dimension, as we shall 
see later).  And the matrix view of linear transformations of infinite dimensional vector 
spaces is thus not really natural nor very useful in most instances. (The basis idea is 
useful in some ways, though. For example, it shows immediately that every vector space 
has a norm, a fact that is otherwise not at all obvious).  
 
In this course, we are going to divide our attention between the two views, the 
matrix/basis one and the abstract vector space/linear transformation one. Both are 
important. And the relationship between them is not hard to see. The dichotomy is not 
one that is worth being impassioned about! 
 
Determinants were the beginning of the subject, partly because people in those days (the 
turn of the 17th to the 18th century) people loved formulas. Obsession with determinants 
for their own sake is largely a thing of the past .   Muir’s Theory of Determinants in the 
Historical Order of Development is a monument, but it is a monument to history for the 
most part. However, the topic remains fundamental. Our text for this course, however, 
adopts a determinant –free approach, for the most part. So before beginning that text as 
such, we shall review the basic ideas of determinants separately. (Material will be 
provided but of course the subject is treated very widely and other material is easily 
available).  
 
The subject itself at a fairly basic level is divided into two parts: One is relatively close to 
intuition. A finite dimensional vector space is a linear space with a certain number of 
“degrees of freedom”, its dimension. A linear transformation has a kernel, the dimension 
of which is the number of degrees of freedom suppressed. Hence the image of the linear 
transformation has dimension, degrees of freedom, equal to the dimension of the original 
space – the dimension of the kernel= the original number of degrees of freedom minus 
the number suppressed by the transformation. This is essentially a physical intuition—
which has the fortunate property that in this case it is correct! (One has to be cautious 
about such things. After all, it is “obvious” that the real line, with one degree of freedom, 
cannot be spread out continuously to cover the plane, with its two degrees of freedom—
obvious but wrong! But such things tend to be true on the linear level. No linear 
transformation can map the line onto the plane!). Such relatively formalistic 
developments come quite trippingly off the mathematical tongue—in a sense, much of 
this early part of the subject could be a series of homework exercises, once the definitions 
are given. (This does not mean that we shall not discuss them in class ,however—we 
shall, albeit fairly rapidly). 



 
But other parts of the subject are quite far from being a more or less immediate 
consequence of the definitions and natural steps from them. It would be hard to argue that 
Jordan canonical form is an immediate consequence of anything easy! Somewhere in 
between in terms of depth are the concepts surrounding diagonalization of symmetric 
matrices. This topic, while not as deep as other canonical form results, occurs so 
frequently in mathematics as a whole that we shall spend some time exploring it from 
various viewpoints. 
 
And there are various viewpoints, not only on this but on the subject as a whole, not just 
the basis-free versus the matrix theory view of the subject but also , and more 
fundamentally, the question of whether the subject is really part of analysis, with the field 
involved  restricted to the real or complex numbers or whether it is part of algebra, with 
the field being allowed to be arbitrary.  
 
Certainly linear algebra as algebra has enormous importance. For example, the idea that a 
field extension E of a ground field F is a vector space over F is a central one in Galois 
theory. And in any case, in many instance, considering vector spaces over arbitrary fields 
requires no additional effort.  
 
However, we are going to pursue some aspects of the subject that are specific to the view 
of it as analysis. First of all, this is interesting—even if one is an algebraist. For example, 
the fact that one can find an eigenvector for a real symmetric matrix by maximizing a 
certain function over the unit sphere is irresistibly attractive to anyone who has any 
feeling for how different aspects of mathematics can relate to each other. And secondly, 
the relationship between linear algebra and analysis is really important. Finally, I am an 
analyst, and to some extent this will shape what I tell you.  
 
Of course, the specific content of the course is aimed at preparing the participants for the 
Basic Examination. That we shall surely accomplish. But in addition, I hope that we shall 
have time to explore a few byways. Linear algebra is a subject with an amazing depth and 
variety. So much comes from so little. I hope you will enjoy it as much as I do. 
 
Robert E. Greene 
  


